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A LEAST-SQUARES PROCEDURE FOR THE SOLUTION OF 
TRANSPORT PROBLEMS 
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SUMMARY 
In this paper a least-squares formulation associated with a conjugate gradient algorithm is proposed for the 
solution of transport problems. In this procedure the advection4iffusion equation is first discretized in time 
using an implicit scheme. At each time step the resulting partial differential equation is replaced by an 
optimal control problem. This minimization problem involves the minimization of a functional defined via a 
state equation. This functional is chosen in order to force the numerical solution of the advection4iffusion 
equation to be equal to the hyperbolic advective part of this equation. The effectiveness of the method is 
shown through a one-dimensional example involving advective and diffusive transport. No oscillation and 
high accuracy have been obtained for the entire range of Peclet numbers with a Courant number well in 
excess of unity. 

KEY WORDS Least-squares method Optimal control problem Conjugate gradient Advection-diffusion equation 
Perturbation series 

1. INTRODUCTION 

The purpose of this paper is to propose a new method for the numerical solution of 
advection-diffusion problems. This numerical method is based on a least-squares formulation 
of the advection-diffusion problem similar to the scaled least-squares method developed by 
Bristeaux et d.,' and consists of transforming a partial differential equation into an optimal 
control problem which is solved by a conjugate gradient algorithm and a finite element 
procedure. 

Transport of pollutant in the atmosphere, lakes or rivers is commonly described by an 
advection-diffusion equation. The mathematical nature of this partial differential equation is 
commonly characterized by the dimensionless Peclet number 

where v is the velocity vector, L is a characteristic length and IID,II represents the Euclidean 
norm of the molecular diffusion tensor. When Pe is small, diffusion is dominant and the equation 
is closely parabolic. When Pe is large, advection dominates and the equation is closely 
hyperbolic. 

When dealing with numerical solutions, the characteristic length is often taken as the size of the 
discretization, Ax. In addition to the numerical Peclet number, the numerical scheme may be 
affected by the relation between the time step and the size of the discretization, characterized by 
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the Courant number 
At 

ac= IVI -. 
Ax 

Numerical methods for solving an advection-diffusion problem may be classified into two 
groups: Eulerian methods, where the discretization in space is performed over a fixed grid in 
space, and Lagrangian methods, where the discretization is performed over a grid moving with 
the front. 

Eulerian methods are efficient when dispersion is dominant and the distribution of concentra- 
tion is relatively smooth. However, when the gradient of concentration of the pollutant is steep 
owing to the importance of advection (high Peclet number), these methods suffer from oscillations 
and large truncation errors. 

Price et a1.2 pointed out the fact that oscillations are mainly due to spatial discretization. They 
proved that a central difference approximation will not oscillate provided 

PeAx < 2. (3) 
Similar criteria to equation (3) have been proposed for weighted residual methods and for other 
finite difference schemes. However, these criteria are not always practical since they often require 
large computational time or large computer space.3 

Upstream-weighting techniques have also been proposed for eliminating oscillations. In spite 
of the success of these types of methods for a large number of problems, they introduce large 
truncation errors which cause numerical dispersion? The effect of this numerical dispersion is to 
smear the sharp front and therefore poor accuracy is obtained at  high Peclet number. A large 
number of corrected finite difference schemes based on.  higher-order approximations in space 
have been proposed for reducing this numerical di~persion.~ 

High-order finite element techniques have also been proposed for the solution of 
advection-diffusion problems.6 These methods are very efficient for a large number of problems; 
however, some of the numerical solutions proposed do not respect the mass balance. 

It is important to note that in most of the Eulerian techniques proposed, numerical corrections 
have been done at a discretization level: element of a finite element procedure or point of a finite 
difference scheme. In the method proposed herein the correction term is formally introduced as a 
constraint defined on the whole space, independently of the finite element discretization. 

In Lagrangian methods the advective terms are eliminated by a moving co-ordinate system. 
The resulting equation is a diffusion problem.', * For high Peclet number, smooth solutions 
without oscillations and with good accuracy for various problems have been obtained by several 
 author^.^. * However, techniques that involve a moving reference may be difficult to implement 
under particular conditions, e.g. complex boundary conditions, multiple-source terms or non- 
homogenous media.' 

The high accuracy obtained by these methods, even for low Peclet number, is essentially due to 
the special numerical treatment near the front corresponding to the advective part of the 
equation. 

Eulerian-Lagrangian methods combine the simplicity of a fixed Eulerian grid with the 
accuracy of the Lagrangian approach. The particle-tracking methods suggested by Garder et d . ' O  

are probably the most popular of the Eulerian-Lagrangian methods. In these methods the 
advection part of the problem is solved by the method of characteristics applied to a set of 
particles. The dispersion part of the problem is solved on a fixed grid by finite element or finite 
difference techniques. No oscillation and high accuracy have been obtained for a large number of 
problems. However, the results are very sensitive to the number of particles associated with each 
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element of the fixed grid and the implementation is made complicated by the presence of particles 
in the element of the fixed grid. 

In our proposed method the advective part and the diffusive part of the transport equation are 
formally decoupled in a similar way to the Eulerian-Lagrangian scheme introduced by N e ~ m a n . ~  
This separation is used for the mathematical definition of the objective function (or cost function) 
to minimize. For the advectiondiffusion equation this objective function is proposed to be the 
sum of two terms: a first term corresponding to the parabolic behaviour of the equation and a 
constraint term corresponding to the hyperbolic behaviour of the equation at high Peclet 
number. In this paper the method is presented in a general form and computed on a one- 
dimensional example. 

2. THEORY 

2.1. Balance equation 

The contaminant transport equation can be stated as 

(4) 
ac 
at 

Rn-=V*(D,Vc+Vc)-RIc+q in R ,  

where n ( [n] = L3/L3) denotes the porosity of the porous medium, c ([c] = M/L3) is the 
contaminant concentration, Dh( [D,] = L2/T) is the hydrodynamic dispersion tensor, V 
([V] = L/T) is the fluid velocity, t is the time, q is a source or sink term, I is used to represent the 
processes of reaction or decay of contaminants in the porous medium and R is the retardation 
factor. 

The hydrodynamic dispersion tensor D, can be expressed as'' 

where aT and aL denote the longitudinal and transverse dispersivities respectively, 11 z 11 denotes the 
Euclidean norm of the vector z, I is the unit matrix and D* is the molecular diffusion coefficient. 

2.2. Initial and boundary conditions 

The initial conditions are given by 

4x3 O)=co(x), (6) 
where x is the position vector and co is a known function. 

The boundary conditions can be stated in a general form as 

(-D,Vc+Vc) - n + a i ( c - C ) = Q  on ri, (7) 
where n is the unit outward normal vector along the boundary ri, C and Q are prescribed 
functions of space and time, and ai determines the nature of the boundary condition acting on ri. 
The condition along the boundary can vary from prescribed flux (a, = 0) to prescribed concentra- 
tion (ai = a). For inteimediate values of ai the condition is mixed. 

2.3. Advection-Diffusion equation for large Peclet number 

The numerical difficulties appearing in the Eulerian scheme for large Peclet number are due to 
the advective nature of the equation. In the following a perturbation method is used to analyse 
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the mathematical behaviour of the advection-diffusion equation for large values of the Peclet 
number. 

A non-dimensional form of the above advection-diffusion equation may be obtained by 
introducing the following non-dimensional parameters: 

C 
= - 9  

Cref 

where cref corresponds to a constant reference concentration value; 

for the non-dimensional nabla operator; 

for the non-dimensional dispersion tensor; 

V u=- 
IVI 

for the non-dimensional fluid velocity. 
The non dimensional form of the advection-diffusion equation can be written as 

where z = tlVl/Ax. 
The corresponding initial and boundary conditions are given by 

The behaviour of the solution of the above 
expanding 4 in a perturbation series in 1/Pe, 

( d - C , ) = l v l e ,  C Q on ri. 

non-dimensional equation may be studied by 

where c$o is the solution of the hyperbolic equation 
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and 
hand side: 

is the solution of a hyperbolic equation containing a known diffusion term on the right- 

For any n, $,, is the solution of the following hyperbolic equation: 

4 n ( X ,  0) = 0, (20) 

(21) 
a.  

(- DV4, - + u4,J-n + 2 4, = 0 on ri. 
IVI 

Analytical solution of the hyperbolic equations governing 4, can be found using the method of 
characteristics.'. 

Note that 4o defines the equation of the front of the advection-diffusion equation. It 
corresponds to a limiting case of infinite Peclet number. For large Peclet numbers the solution of 
&),, is concentrated near the front; therefore far from the front the solution of the 
advection-diffusion equation will be nearly equal to 40. 

A mathematical algorithm for solving the advection-diffusion equation has to take into 
account the limiting mathematical behaviour. For the consideration of this problem one can 
impose that the numerical solution be equal to 4o except on a domain moving with the front. 

Another type of constraint is to impose that for large Peclet number the numerical scheme be 
equal to the perturbation expansion (equation (12)). 

These two types of constraint will be introduced in the least-squares procedure presented in the 
next section. 

3. LEAST-SQUARES FORMULATION OF THE PROBLEM 

We first discretize in time the advection-diffusion equation (equation (4)) using either an explicit 
or implicit scheme. The implicit discretization chosen for the transport equation may be written 
as follows. 

For the initial condition, 
c(x, 0) = co(x). (22) 

(23) 

(- DhVC'+'  + Vc'+' ) .n  + - C) = Q on ri, (24) 

After J iterations in time, 

~ n p ( c ' + '  - c') = V*(DhVc'+' - vc'+') - RLc*+' + q in R .  

The corresponding boundary conditions are given by 

where p = 1/At' and Atr represents the time step after I iterations in time. For simplification of the 
formulation, C will be taken equal to zero in the further development. 

In the present algorithm the discretized partial differential equation (equation (23)) is formu- 
lated in terms of an optimal control problem. 
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3.1. Optimal control problem 

A possible least-squares formulation of equation (23) may be written as 

( te  v.1 
where <(c" ' )  is an auxiliary function, called the state vector, dependent on the solution c f + '  
through the state equation. 

A strong formulation of this equation may be written as: find < E  V, such that 

~ ~ - A < = R n ~ ( c ' - c ' + ' ) + V . ( D , V c ' + ' - V c " ' ) - R k ' + ' + q  i n R ,  (26) 

V < . n = O  o n r , ,  (27) 

subject to the boundary conditions 

where r, corresponds to mixed and von Neumann boundary conditions (a, finite). V, is the 
Sobolev functional space associated with the state equation: 

V, = {tEH'(Qk < I y p  = 01, 

H'(R2) = (<ELZ(R); (a</axi)EL2(R), i = 1,2,3}  

(28) 

(29) 

where 

and yp corresponds to zero Dirichlet boundary conditions (ap = co, C = 0). 

the optimal control problem is the solution of the discretized advection4iffusion problem. 
Before going further in the development of the method, one has to ensure that the solution of 

By virtue of the Green theorem, the cost function J(<(c'+ ')) can be written as 

where r represents the union of all the boundaries ri. Inserting the boundary conditions of the 
state equation into the mathematical expression of J(<(c'+ l ) ,  one can get 

J(<(c'+ l )  is a positive function and therefore its minimum value will be zero. The last expression 
of J(<(c" l )  shows clearly that c l +  is also the solution of the optimal control problem. 

Note that this result is due to the choices of the boundary conditions of the state equation and 
the Sobolev space V,. If we want to introduce Dirichlet boundary conditions of the type c = C, 
the present least-squares formulation is not adopted. Another choice of cost function, state 
equation and Sobolev space has to be made. 

The state equation may also be written in a weak form, used in a Galerkin finite element 
procedure: find < E V, such that for V y  E V,, 
r r 

The optimal control problem is solved by a conjugate gradient algorithm. 
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3.2. Conjugate gradient algorithm 

product associated with the cost function. 
Let J'(<(c'+ I ) )  denote the gradient of the cost function (equation (25)) and (+, w) the scalar 

For + E V, and w E V,, 

Then the different steps of a conjugate gradient algorithm applied to the solution of equation (25) 
are described as follows. 

Step 0 

cb+% v,. 

($9 so) = - (J'(t(cb' I)) ,  + ) 
Compute go E V, such that for all + E V, , 

and 
zo= -go. 

(34) 

(35) 
Computation of the ( n + l ) t h  iteration. cfi", g" and the search direction z, are known 

functions. 

Step 1: Descent. Find 

1" = argrninJ(&+ + azn)), a €  IW (36) 

(line search), 
c, 1 + 1  + - - c, 1 + 1  + anz,. (37) 

Step 2: New descent direction. Compute g" + E Vg such that for all +E Vg, 

and 
z.+1= - g " + l  + y + 1 z n .  

In the classic version of the algorithm y" + is taken as 

(g",  9") Y"+ = (g- 1 ,  g" - 1 ) '  

(39) 

In the present work the Nazareth version13 of the Conjugate Gradient Algorithm was imple- 
mented. 

Each evaluation of J(&' + I ) )  for a given argument c' + requires the solution of the state 
equation (26) in order to obtain the vector <. 

The calculation of t j  + in the conjugate gradient algorithm requires also the 
solution of a similar elliptic problem. This second problem requires the mathematical calculation 
of J'(<(c' + l)). The gradient of the cost function J ( t )  may be formally defined as:' for all w E V,, 

from c:'+ 

J({(c' + + tw)) - J(t(C' + I ) )  
( J'({(c' + I)), w ) = lim t 9 

t - + O ,  t # O .  (42) 
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A formal expression of J ' ( 5 )  may be obtained directly from the weak formulation of the state 
equation (26). The details of this algebraic development are presented in the Appendix, where it is 
shown that ( J'(<(c' + I ) ) ,  $ ) can be identified with the linear functional 

(Rnfiwt + D,Vw V< + WV * V< - RAe) dR . (43) .-b 
Therefore a weak formulation of equations (34) and (37) may be written as: find q~ Vg such that 
for all W E  V,, 

In ( fiqw + V q  * Vw)  dR = (Rnfiwq + D,Vw - V q  + WV V q  - RAq) dR . (44) 

3.3. Objective function for advection-diffusion problem 

The choice of the objective function is not unique; it depends on the choice of the functional 
space V, on which the minimization is done. The mathematical form of the objective function 
corresponds to a norm associated with the functional space V,. For quick convergence this 
chosen norm has to be appropriate to the state equation.' 

The objective function presented above (equation (26)) is not appropriate for the solution of 
transport problems, especially for high Peclet number. This is due to the fact that the state 
equation has the structure of a diffusion problem. 

Numerical tests performed with the present formulation did not give satisfactory results. 
Results similar to upstream-weighting techniques have been obtained. Smearing near the front, 
small oscillations and numerical dispersion appear at high Peclet number. 

With the present cost function, the proposed algorithm belongs to the Eulerian-type methods 
and does not take into account the hyperbolic aspect of the problem. At high Peclet number the 
solution of the advection-diffusion problem is very close to the associated hyperbolic advective 
equation C = cref& (see Section 2). Moreover, these two solutions will be nearly equal except on a 
domain near the front. 

In order to consider this mathematical behaviour, one can impose that the solution and its 
gradient be equal respectively to the advective solution C and its gradient outside this domain 
moving with the front. This is done by introducing an integral constraint in the cost function. 
A first possible choice for the corrected cost function is 

BIIeII'+ lIVTIIZd~ 

where C" = crefq5(x, t ' +  ') and Dj+ defines the moving domain after 1 iterations in time: 

of + 1 .= (x E R;l(c' + 1 - 2' + ')I 2 E }  , (46) 
where E represents a small positive number. p(Pe) is the Lagrangian coefficient representing the 
relative weight of the constraint in the minimization procedure. 

A rigorous method for the determination of ,u(Pe) is a difficult mathematical task. However, 
p ( P e )  is adjusted in order to reinforce the constraint for high Peclet number and to neglect it for 
small Pedet number. 

at each time step can be difficult, 
especially for complicated problems. Moreover, the computation of the constraint integral over 

One can argue that a rigorous determination of Df+ 
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R - Df+ using a finite element procedure requires the selection of nodal points and elements 
inside Df+ at each time step. Therefore, for difficult problems involving mixed boundary 
conditions or source terms, the implementation of the method may 'be complicated. 

This problem is similar to the determination of the 'zone of computation' appearing in 
Lagrangian methods." For simple problems of constant velocity, the moving co-ordinate 
system method can be used for a rigorous determination of Df + 

A way of overcoming the difficulty of the moving domain is to introduce a more restrictive 
constraint. We could force the solution to be equal to the perturbation series, presented in 
Section 2, for large Peclet numbers. The corresponding cost function may be written as 

BllT1I2 + llVTll2dQ 

where 

This second formulation involve the analytical or numerical determination of each 4i, 

From a mathematical point of view, in both cases, the addition of constraints does not require a 
change of the functional space V,. It is easily shown that these new cost functions define two new 
norms on VB. It is not yet clear how good the choice of norm and state equation is from a 
convergence point of view. 

Although the second approach is of interest, it will not be pursued in the present work. In the 
following section a one-dimensional example is presented with the least-squares moving domain 
formulation (16). 

4. EXAMPLE 

i = l ,  . . . ,  no. 

The governing transport equation may be written as 

a Z c  ac ac 
a2x ax at 

D-- V - = n - ,  

4.1. Problem I 

The initial and boundary conditions relative to Problem I are 

C(0,O) = co 9 

c(x,O) = 0, x 2  0, 

ac 
- (O,  t ) = O ,  
ax 

c(o0, t)' 0. 

The least-squares formulation of Problem I is written 

min J ,  (4(c' + ' )) , 
(C E V,) 

(49) 

153) 

(54) 
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where {(c' + l )  is the solution of the state equation (26) and the Sobolev space V,: 

Vl = { ~ € ~ l ( ( O , l ) ) ; ~ ( l ) = o } .  (55)  

L = 3.6 / , / (Pe) .  (56) 

The moving domain is determined using a moving co-ordinate system. For E = 0.01 it can be 
shown that the diffusion length L is' 

For the computation was defined as a segment of length L and centre Vt'. 
A linear dependence with respect to Pe was assumed for p(Pe):  

p (Pe )  = Pe ,  Pe < 100, (57) 

p(Pe)= 100, Pe 2 100. (58 )  

Table I. Values of physical parameters for Problem I 

Parameter 

Darcy velocity V 
Porosity n 
Molecular diffusion coefficient Do 
Longitudinal dispersivity aL for case 1 
Longitudinal dispersivity aL for case 2 
Longitudinal dispersivity aL for case 3 
Longitudinal dispersivity aL for case 4 
Concentration at the source, co 

Value Pe Figure 

1 m day- 
0.25 
0.01 m2 day- 
5 m  2 1 
2 m  5 2 
0.2 m 50 3 
0.0 m +a 4 
1 mgm-.3 

Ax = 10 m; At = 2 3  days 

CASE 1. aL = 5m 
- ANALYTIC 
A LEASTSQUARE 

0 

0) > 

0.2 - 

I I 

50 1 0 0  150 200 250 300 350 400 

Distance, x(m) 

Figure 1. Comparison of analytical and numerical solutions for Problem I. case 1 
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.- 
c 

2 c 

f 0.6 
8 
f 

a 

.- 
c H 0.4 

0.2 

1 1 

t - 25 days 
- 

b 

- 

- 

I I I I I 

CASE 2, uL= 2 m  

- ANALYTIC 
A LEASTSQUAUE 

c 
0 .- c 

0.2 - 

Distance. x (m) 

Figure 2. Comparison of analytical and numerical solutions for Problem I, case 2 

t = 50 doys 3 
Figure 3. Comparison of analytical and numerical solutions for Problem I, case 3 
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I 

0.8 - 5 
c 
P c t o.6 

.- 9 

b=' 
- 6 0.4 

a2 

1.0 I 
- 

- 

- 

- 

- 
A 

=25 days 

CASE 4, Q~ = 0 
- ANALYTIC 
A LEAST 

SaOLIRE 

t =so days 

A 
I I 2 250 300 : 0 

Distance. x(m) 

Figure 4. Comparison of analytical and numerical solutions for Problem I, case 4 

The numerical procedure was compared with the analytical solution found in Reference 11: 

With the notation of Section 2, the diffusivity D may be written as 

D = a,V+ D*. (60) 
The grid chosen for the finite element procedure comprises 10 elements of equal size Ax = 10 m. 

Four values of Peclet number were considered, corresponding to different longitudinal dis- 
persivity uL. A list of the values of the physical parameters is given on Table I. 

In Figures 1-4 the results of the computation are presented for a time step At = 2.5 days. 
At low Peclet number (cases 1 and 2) the results are similar to those of the Galerkin finite 

element code existing in the 1iterat~re.l~ However, for large Peclet number (cases 3 and 4) no 
oscillation appears and high accuracy has been obtained. 

Case 3 (Pe = 50) was tested for different time steps At = @25,1,2-5 and 5 days. A difference of 
2%-5% between the different solutions was obtained. 

5. CONCLUSIONS 

A general least-squares formulation for the solution of transport problems has been presented. 
The novel feature of the method resides in the choice of a suitable functional which takes into 
account the parabolic nature of the problem for low Peclet number and its hyperbolic nature for 
large Peclet number. 

The method has been employed to solve a one-dimensional problem. The numerical results 
obtained demonstrate the high accuracy of the present method and the absence of oscillation and 
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numerical diffusion. In spite of the Eulerian co-ordinates used, the results seem to be nearly 
independent of the Courant number. 

Further investigations of the method in the future will include numerical improvements such as 
acceleration of the algorithm, and analysis of one-, two- and three-dimensional problems with 
different types of boundary conditions. 

APPENDIX: CALCULATION OF THE GRADIENT OF THE COST FUNCTION 

The direct computation of J'(<(c' + ')) from the definition of the gradient, equation (25), requires 
the computation of <(c' + ' + tw). 

In(B&+V<.Vv)dQ= [ R n B ( C ' - C ' + ' ) ~ + ( ( D h V C ' + '  -vC'+')*vv 

- Rlc' + ' v  + 4v-J dR 

- 

From the weak formulation of the state equation, one can get: for all V E  Vg, 

I* 
[(Van + uQ)c'+' - Q ] v d r  

+ t (  Jn(Rnwv + DhVw*Vv + w V - V v  - RAw)dQ . ) 
The above expression suggests that 

<(c'+ + tw) = <(c'+ ') + tq, (62) 
where q is the solution of: for all y t ~  Vg, 

In(&v + Vq*Vv)dR = (RnBwv + DhVW'Vly + w V - V v  - Rlw)dQ. b 

b 

(63) 

We are now able to express the cost function at the point <(c" ' + tw). From equation (25) one 
can get 

J(<(c'+' + tw)) = J(<(c'+')) + t (Bq< + Vq*V<)dR + O(t2).  (64) 

Therefore from the definition of the derivative and from equation (63) one can get 

( J'(<(c' + ')), $ ) = (Rnpw< + D,Vw - V< + w - V< - Rlw)dQ . (65) I 
The same calculation can be performed for the computation of J ;  (<(c' + I); it is easily shown that 

( J ;  (<(C' + ')), $ ) = (R@w< + DhVW ' v< + w v  * v< - RAW) dR s. 
+ p ( P e ) [  (cl+lw+Vc'+l-Vw)dR. (66) 

Q - % + ,  
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